Step 1: Find the left-hand derivative (LHD)
The LHD at \( x = 1 \) is: \[ {LHD} = \lim_{h \to 0^-} \frac{f(1 + h) - f(1)}{-h}. \] Substituting \( f(x) = x^2 + 1 \) for \( x<1 \): \[ {LHD} = \lim_{h \to 0^-} \frac{(1 - h)^2 + 1 - 2}{-h}. \] Simplify: \[ {LHD} = \lim_{h \to 0^-} \frac{1 - 2h + h^2 - 1}{-h} = \lim_{h \to 0^-} \frac{-2h + h^2}{-h}. \] Factorize: \[ {LHD} = \lim_{h \to 0^-} (2 - h) = 2. \]
Step 2: Find the right-hand derivative (RHD)
The RHD at \( x = 1 \) is: \[ {RHD} = \lim_{h \to 0^+} \frac{f(1 + h) - f(1)}{h}. \] Substituting \( f(x) = 3 - x \) for \( x>1 \): \[ {RHD} = \lim_{h \to 0^+} \frac{[3 - (1 + h)] - 2}{h}. \] Simplify: \[ {RHD} = \lim_{h \to 0^+} \frac{-h}{h} = -1. \]
Step 3: Check differentiability
Since \( {LHD} \neq {RHD} \), \( f(x) \) is not differentiable at \( x = 1 \).
Let the function, \(f(x)\) = \(\begin{cases} -3ax^2 - 2, & x < 1 \\a^2 + bx, & x \geq 1 \end{cases}\) Be differentiable for all \( x \in \mathbb{R} \), where \( a > 1 \), \( b \in \mathbb{R} \). If the area of the region enclosed by \( y = f(x) \) and the line \( y = -20 \) is \( \alpha + \beta\sqrt{3} \), where \( \alpha, \beta \in \mathbb{Z} \), then the value of \( \alpha + \beta \) is: