1. Continuity at \( x = 1 \): \[ f(1^-) = \lim_{x \to 1^-} f(x) = (1)^2 + 1 = 2, \] \[ f(1^+) = \lim_{x \to 1^+} f(x) = 3 - 1 = 2. \] Thus, \( f(1^-) = f(1^+) = f(1) = 2 \), so \( f(x) \) is continuous at \( x = 1 \).
2. Differentiability at \( x = 1 \): Find the left-hand derivative: \[ f'(x) = \frac{d}{dx} (x^2 + 1) = 2x, \quad f'(1^-) = 2(1) = 2. \] Find the right-hand derivative: \[ f'(x) = \frac{d}{dx} (3 - x) = -1, \quad f'(1^+) = -1. \] Since \( f'(1^-) \neq f'(1^+) \), the function is not differentiable at \( x = 1 \).
Final Answer: \( \boxed{ {Not differentiable at } x = 1} \)
Let the function, \(f(x)\) = \(\begin{cases} -3ax^2 - 2, & x < 1 \\a^2 + bx, & x \geq 1 \end{cases}\) Be differentiable for all \( x \in \mathbb{R} \), where \( a > 1 \), \( b \in \mathbb{R} \). If the area of the region enclosed by \( y = f(x) \) and the line \( y = -20 \) is \( \alpha + \beta\sqrt{3} \), where \( \alpha, \beta \in \mathbb{Z} \), then the value of \( \alpha + \beta \) is: