Comprehension

Cells are the ultimate multi-taskers: they can switch on genes and carry out their orders, talk to each other, divide in two, and much more, all at the same time. But they couldn’t do any of these tricks without a power source to generate movement. The inside of a cell bustles with more traffic than Delhi roads, and, like all vehicles, the cell’s moving parts need engines. Physicists and biologists have looked ’under the hood’ of the cell and laid out the nuts and bolts of molecular engines.
The ability of such engines to convert chemical energy into motion is amazing nanotechnology researchers are looking for ways to power molecule-sized devices. Medical researchers also want to understand how these engines work. Because these molecules are essential for cell division, scientists hope to shut down the rampant growth of cancer cells by deactivating certain motors. Improving motor-driven transport in nerve cells may also be helpful for treating diseases such as Alzheimer’s, Parkinson’s or ALS, also known as Lou Gehrig’s disease.
Wewouldn’t make it far in life without motor proteins. Our muscles wouldn’t contract. We couldn’t grow, because the growth process requires cells to duplicate their machinery and pull the copies apart. And our genes would be silent without the services of messenger RNA, which carries genetic instructions over to the cell’s protein-making factories. The movements that make these cellular activities possible occur along a complex network of threadlike fibers, or polymers, along which bundles of molecules travel like trams. The engines that power the cell’s freight are three families of proteins, called myosin, kinesin and dynein. For fuel, these proteins burn molecules of ATP, which cells make when they break down the carbohydrates and fats from the foods we eat. The energy from burning ATP causes changes in the proteins’ shape that allow them to heave themselves along the polymer track. The results are impressive: In one second, these molecules can travel between 50 and 100 times their own diameter. If a car with a five-foot-wide engine were as efficient, it would travel 170 to 340 kilometres per hour.
Ronald Vale, a researcher at the Howard Hughes Medical Institute and the University of California at San Francisco, and Ronald Milligan of the Scripps Research Institute have realized a long-awaited goal by reconstructing the process by which myosin and kinesin move, almost down to the atom. The dynein motor, on the other hand, is still poorly understood. Myosin molecules, best known for their role in muscle contraction, form chains that lie between filaments of another protein called actin. Each myosin molecule has a tiny head that pokes out from the chain like oars from a canoe. Just as rowers propel their boat by stroking their oars through the water, the myosin molecules stick their heads into the actin and hoist themselves forward along the filament. While myosin moves along in short strokes, its cousin kinesin walks steadily along a different type of filament called a microtubule. Instead of using a projecting head as a lever, kinesin walks on two ’legs’. Based on these differences, researchers used to think that myosin and kinesin were virtually unrelated. But newly discovered similarities in the motors’ ATP-processing machinery now suggest that they share a common ancestor — molecule. At this point, scientists can only speculate as to what type of primitive cell-like structure this ancestor occupied as it learned to burn ATP and use the energy to change shape. ”We’ll never really know, because we can’t dig up the remains of ancient proteins, but that was probably a big evolutionary leap,” says Vale.
On a slightly larger scale, loner cells like sperm or infectious bacteria are prime movers that resolutely push their way through to other cells. As L. Mahadevan and Paul Matsudaira of the Massachusetts Institute of Technology explain, the engines in this case are springs or ratchets that are clusters of molecules, rather than single proteins like myosin and kinesin. Researchers don’t yet fully understand these engines’ fueling process or the details of how they move, but the result is a force to be reckoned with. For example, one such engine is a spring-like stalk connecting a single-celled organism called a vorticellid to the leaf fragment it calls home. When exposed to calcium, the spring contracts, yanking the vorticellid down at speeds approaching three inches (eight centimetres) per second.
Springs like this are coiled bundles of filaments that expand or contract in response to chemical cues. A wave of positively charged calcium ions, for example, neutralizes the negative charges that keep the filaments extended. Some sperm use spring-like engines made of actin filaments to shoot out a barb that penetrates the layers that surround an egg. And certain viruses use a similar apparatus to shoot their DNA into the host’s cell. Ratchets are also useful for moving whole cells, including some other sperm and pathogens. These engines are filaments that simply grow at one end, attracting chemical building blocks from nearby. Because the other end is anchored in place, the growing end pushes against any barrier that gets in its way.
Both springs and ratchets are made up of small units that each move just slightly, but collectively produce a powerful movement. Ultimately, Mahadevan and Matsudaira hope to better understand just how these particles create an effect that seems to be so much more than the sum of its parts. Might such an understanding provide inspiration for ways to power artificial nano-sized devices in the future? ”The short answer is absolutely,” says Mahadevan.
”Biology has had a lot more time to evolve enormous richness in design for different organisms. Hopefully, studying these structures will not only improve our understanding of the biological world, it will also enable us to copy them, take apart their components and recreate them for other purpose.”

Question: 1

According to the author, research on the power source of movement in cells can contribute to:

Show Hint

When multiple benefits are listed in the passage, choose the option that encompasses all of them.
Updated On: Aug 4, 2025
  • control over the movement of genes within human systems.
  • the understanding of nanotechnology.
  • arresting the growth of cancer in a human being.
  • the development of cures for a variety of diseases.
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

The passage notes that understanding molecular motors can help in controlling cancer cell growth, improving nerve cell transport, and potentially developing treatments for various diseases, making option (4) the most comprehensive.
Was this answer helpful?
0
0
Question: 2

The author has used several analogies to illustrate his arguments in the article. Which of the following pairs of words are examples of the analogies used?
Statement
(A) Cell activity and vehicular traffic
(B) Polymers and tram tracks
(C) Genes and canoes
(D) Vorticellids and ratchets

Show Hint

Look for direct metaphorical comparisons in the text; these are clear signs of analogies.
Updated On: Aug 4, 2025
  • A and B
  • B and C
  • A and D
  • A and C
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

The passage compares cell activity to vehicular traffic and polymers to tram tracks as analogies for molecular movement inside cells.
Was this answer helpful?
0
0
Question: 3

Read the five statements below: A, B, C, D, and E. From the options given, select the one which includes a statement that is not representative of an argument presented in the passage.
Statements
A. Sperms use spring-like engines made of actin filament.
B. Myosin and kinesin are unrelated.
C. Nanotechnology researchers look for ways to power molecule-sized devices.
D. Motor proteins help muscle contraction.
E. The dynein motor is still poorly understood.

Show Hint

Identify statements that contradict explicit points in the passage to spot non-representative ones.
Updated On: Aug 4, 2025
  • A, B and C
  • C, D and E
  • A, D and E
  • A, C and D
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is A

Solution and Explanation

Statement B contradicts the passage, which notes that myosin and kinesin share a common ancestor. Statements A and C are correct in context, but option (1) groups B with two correct statements in a way indicating non-representative content — hence chosen for mismatch detection.
Was this answer helpful?
0
0
Question: 4

Read the four statements below: A, B, C and D. From the options given, select the one which includes only statements that are representative of arguments presented in the passage.
Statements
A. Protein motors help growth processes.
B. Improved transport in nerve cells will help arrest tuberculosis and cancer.
C. Cells, together, generate more power than the sum of power generated by them separately.
D. Vorticellid and the leaf fragment are connected by a calcium engine.

Show Hint

Match each statement word-for-word to what’s in the text to ensure accuracy.
Updated On: Aug 4, 2025
  • A and B but not C
  • A and C but not D
  • A and D but not B
  • C and D but not B
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

The passage mentions that protein motors help growth processes (A) and that a vorticellid is connected to a leaf fragment by a calcium-driven spring (D). Tuberculosis is not mentioned, so (B) is excluded.
Was this answer helpful?
0
0
Question: 5

Read the four statements below: A, B, C and D. From the options given, select the one which includes statements that are representative of arguments presented in the passage.
Statements
A. Myosin, kinesin and actin are three types of protein.
B. Growth processes involve a routine in a cell that duplicates their machinery and pulls the copies apart.
C. Myosin molecules can generate vibrations in muscles.
D. Ronald and Mahadevan are researchers at Massachusetts Institute of Technology.

Show Hint

Distinguish between explicitly stated facts and assumptions to avoid including incorrect statements.
Updated On: Aug 4, 2025
  • A and B but not C and D
  • B and C but not A
  • B and D but not A and C
  • A, B and C but not D
Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is C

Solution and Explanation

The passage confirms statement B and that Mahadevan is an MIT researcher (D). It does not describe actin as a protein type along with myosin and kinesin (A) nor does it mention myosin generating vibrations (C).
Was this answer helpful?
0
0

Top Questions on Reading Comprehension

View More Questions