To determine the wavelength (\( \lambda \)) of a proton moving at a given velocity, we utilize the de Broglie hypothesis, which relates the wave-like and particle-like properties of matter. The de Broglie equation is given by: \[ \lambda = \frac{h}{mv} \] where:
- \( \lambda \): wavelength of the particle
- \( h \): Planck’s constant (\( 6.626 \times 10^{-34} \, \text{J·s} \))
- \( m \): mass of the particle
- \( v \): velocity of the particle
Given:
- Mass of proton (\( m \)) = \( 1.673 \times 10^{-27} \, \text{kg} \)
- Velocity of proton (\( v \)) = \( 1.0 \times 10^3 \, \text{m/s} \)
- Step 1: Substitute the Known Values into the de Broglie Equation
\[ \lambda = \frac{6.626 \times 10^{-34} \, \text{J·s}}{1.673 \times 10^{-27} \, \text{kg} \times 1.0 \times 10^3 \, \text{m/s}} \] - Step 2: Calculate the Denominator
\[ m \times v = 1.673 \times 10^{-27} \, \text{kg} \times 1.0 \times 10^3 \, \text{m/s} = 1.673 \times 10^{-24} \, \text{kg·m/s} \] - Step 3: Compute the Wavelength (\( \lambda \))
\[ \lambda = \frac{6.626 \times 10^{-34} \, \text{J·s}}{1.673 \times 10^{-24} \, \text{kg·m/s}} = 3.957 \times 10^{-10} \, \text{m} \] - Step 4: Convert Meters to Nanometers
Since \( 1 \, \text{nm} = 1 \times 10^{-9} \, \text{m} \): \[ \lambda = 3.957 \times 10^{-10} \, \text{m} \times \frac{1 \, \text{nm}}{1 \times 10^{-9} \, \text{m}} = 0.3957 \, \text{nm} \] - Step 5: Round to Appropriate Significant Figures
Given the velocity is provided as \( 1.0 \times 10^3 \, \text{m/s} \) (two significant figures), we round the wavelength accordingly: \[ \lambda \approx 0.40 \, \text{nm} \]
Conclusion:
The wavelength associated with a proton moving at \( 1.0 \times 10^3 \, \text{m/s} \) is approximately 0.40 nm. Therefore, the correct option is: \[ \boxed{(2) \, 0.40 \, \text{nm}} \]