Calculate the following for the given circuit:
Given:
Resistance \( R = 400 \, \Omega \), Inductive voltage \( V_L = 120 \, V \), Capacitive voltage \( V_C = 120 \, V \), and source voltage: \[ V = 200 \cos(50\pi t) \, \text{volt} \]
(i) Current in the circuit
Step 1: The impedance of the circuit: Since the inductor and capacitor voltages are equal, they cancel each other out, leaving only the resistance.
Step 2: Applying Ohm's law: \[ I = \frac{V}{R} \] \[ = \frac{200}{400} \] \[ = 0.5 \, \text{A} \] \[ \boxed{I = 0.5 \, \text{A}} \] (ii) The potential across resistance
Solution: Step 1: Using Ohm's law to find the potential across the resistor: \[ V_R = IR \] \[ = (0.5)(400) \] \[ = 200 \, \text{V} \] \[ \boxed{V_R = 200 \, \text{V}} \]
(iii) The phase difference between the potentials across inductor and capacitor
Solution:
Step 1: In an LC circuit, the voltage across the inductor leads the current by \(90^\circ\), while the voltage across the capacitor lags the current by \(90^\circ\).
Step 2: Therefore, the phase difference between the inductor and capacitor voltages is: \[ \theta = 90^\circ + 90^\circ = 180^\circ \] \[ \boxed{180^\circ} \]
The switch (S) closes at \( t = 0 \) sec. The time, in sec, the capacitor takes to charge to 50 V is _________ (round off to one decimal place).
The op-amps in the following circuit are ideal. The voltage gain of the circuit is __________(round off to the nearest integer).
In the system shown below, the generator was initially supplying power to the grid. A temporary LLLG bolted fault occurs at \( F \) very close to circuit breaker 1. The circuit breakers open to isolate the line. The fault self-clears. The circuit breakers reclose and restore the line. Which one of the following diagrams best indicates the rotor accelerating and decelerating areas?
The transformer connection given in the figure is part of a balanced 3-phase circuit where the phase sequence is “abc”. The primary to secondary turns ratio is 2:1. If \( I_a + I_b + I_c = 0 \), then the relationship between \( I_A \) and \( I_{ad} \) will be:
In the circuit shown below, if the values of \( R \) and \( C \) are very large, the form of the output voltage for a very high frequency square wave input is best represented by:
(b) Order of the differential equation: $ 5x^3 \frac{d^3y}{dx^3} - 3\left(\frac{dy}{dx}\right)^2 + \left(\frac{d^2y}{dx^2}\right)^4 + y = 0 $