Calculate the following for the given circuit:
Given:
Resistance \( R = 400 \, \Omega \), Inductive voltage \( V_L = 120 \, V \), Capacitive voltage \( V_C = 120 \, V \), and source voltage: \[ V = 200 \cos(50\pi t) \, \text{volt} \]
(i) Current in the circuit
Step 1: The impedance of the circuit: Since the inductor and capacitor voltages are equal, they cancel each other out, leaving only the resistance.
Step 2: Applying Ohm's law: \[ I = \frac{V}{R} \] \[ = \frac{200}{400} \] \[ = 0.5 \, \text{A} \] \[ \boxed{I = 0.5 \, \text{A}} \] (ii) The potential across resistance
Solution: Step 1: Using Ohm's law to find the potential across the resistor: \[ V_R = IR \] \[ = (0.5)(400) \] \[ = 200 \, \text{V} \] \[ \boxed{V_R = 200 \, \text{V}} \]
(iii) The phase difference between the potentials across inductor and capacitor
Solution:
Step 1: In an LC circuit, the voltage across the inductor leads the current by \(90^\circ\), while the voltage across the capacitor lags the current by \(90^\circ\).
Step 2: Therefore, the phase difference between the inductor and capacitor voltages is: \[ \theta = 90^\circ + 90^\circ = 180^\circ \] \[ \boxed{180^\circ} \]
Explain the principle of Wheatstone's bridge by Kirchhoff's law. In the given circuit, there is no deflection in the galvanometer \( G \). What is the current flowing through the cell?
Three ac circuits are shown in the figures with equal currents. Explain with reason, if the frequency of the voltage \( E \) is increased then what will be the effect on the currents in them.
What is the first law of Kirchhoff of the electrical circuit? Find out the potential difference between the ends of 2 \(\Omega\) resistor with the help of Kirchhoff's law. See the figure:
State Kirchhoff's law related to electrical circuits. In the given metre bridge, balance point is obtained at D. On connecting a resistance of 12 ohm parallel to S, balance point shifts to D'. Find the values of resistances R and S.
With the help of the given circuit, find out the total resistance of the circuit and the current flowing through the cell.
Mention the events related to the following historical dates:
\[\begin{array}{rl} \bullet & 321 \,\text{B.C.} \\ \bullet & 1829 \,\text{A.D.} \\ \bullet & 973 \,\text{A.D.} \\ \bullet & 1336 \,\text{A.D.} \\ \bullet & 1605 \,\text{A.D.} \\ \bullet & 1875 \,\text{A.D.} \\ \bullet & 1885 \,\text{A.D.} \\ \bullet & 1907 \,\text{A.D.} \\ \bullet & 1942 \,\text{A.D.} \\ \bullet & 1935 \,\text{A.D.} \end{array}\]