First, calculate the standard cell potential (\( E^\circ_{\text{cell}} \)): \[ E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} = 0.80 - (-0.44) = 1.24 \, \text{V} \] Next, calculate \( \Delta G^\circ \) using the equation: \[ \Delta G^\circ = -nFE^\circ_{\text{cell}} \] Since the number of electrons transferred \( n = 2 \): \[ \Delta G^\circ = -2 \times 96500 \times 1.24 = -239,360 \, \text{J/mol} = -239.36 \, \text{kJ/mol} \] Now, calculate \( \log K_c \) using the relationship: \[ \Delta G^\circ = -RT \ln K_c \] At 25°C, R = 8.314 , \(\text{J/mol.K}\), T = 298 ,\(\text{K}\) : \[ -239,360 = -(8.314)(298) \ln K_c \] Solving for \( \ln K_c \): \[ \ln K_c = \frac{239,360}{(8.314)(298)} = 96.5 \] Therefore: \[ K_c = e^{96.5} \quad \Rightarrow \quad \log K_c = 96.5 \, \text{(approx.)} \] Thus, \( \Delta G^\circ = -239.36 \, \text{kJ/mol} \) and \( \log K_c = 96.5 \).