First, calculate the standard cell potential (\( E^\circ_{\text{cell}} \)): \[ E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} = 0.80 - (-0.44) = 1.24 \, \text{V} \] Next, calculate \( \Delta G^\circ \) using the equation: \[ \Delta G^\circ = -nFE^\circ_{\text{cell}} \] Since the number of electrons transferred \( n = 2 \): \[ \Delta G^\circ = -2 \times 96500 \times 1.24 = -239,360 \, \text{J/mol} = -239.36 \, \text{kJ/mol} \] Now, calculate \( \log K_c \) using the relationship: \[ \Delta G^\circ = -RT \ln K_c \] At 25°C, R = 8.314 , \(\text{J/mol.K}\), T = 298 ,\(\text{K}\) : \[ -239,360 = -(8.314)(298) \ln K_c \] Solving for \( \ln K_c \): \[ \ln K_c = \frac{239,360}{(8.314)(298)} = 96.5 \] Therefore: \[ K_c = e^{96.5} \quad \Rightarrow \quad \log K_c = 96.5 \, \text{(approx.)} \] Thus, \( \Delta G^\circ = -239.36 \, \text{kJ/mol} \) and \( \log K_c = 96.5 \).
Consider the following half cell reaction $ \text{Cr}_2\text{O}_7^{2-} (\text{aq}) + 6\text{e}^- + 14\text{H}^+ (\text{aq}) \longrightarrow 2\text{Cr}^{3+} (\text{aq}) + 7\text{H}_2\text{O}(1) $
The reaction was conducted with the ratio of $\frac{[\text{Cr}^{3+}]^2}{[\text{Cr}_2\text{O}_7^{2-}]} = 10^{-6}$
The pH value at which the EMF of the half cell will become zero is ____ (nearest integer value)
[Given : standard half cell reduction potential $\text{E}^\circ_{\text{Cr}_2\text{O}_7^{2-}, \text{H}^+/\text{Cr}^{3+}} = 1.33\text{V}, \quad \frac{2.303\text{RT}}{\text{F}} = 0.059\text{V}$