First, calculate the standard cell potential (\( E^\circ_{\text{cell}} \)): \[ E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} = 0.80 - (-0.44) = 1.24 \, \text{V} \] Next, calculate \( \Delta G^\circ \) using the equation: \[ \Delta G^\circ = -nFE^\circ_{\text{cell}} \] Since the number of electrons transferred \( n = 2 \): \[ \Delta G^\circ = -2 \times 96500 \times 1.24 = -239,360 \, \text{J/mol} = -239.36 \, \text{kJ/mol} \] Now, calculate \( \log K_c \) using the relationship: \[ \Delta G^\circ = -RT \ln K_c \] At 25°C, R = 8.314 , \(\text{J/mol.K}\), T = 298 ,\(\text{K}\) : \[ -239,360 = -(8.314)(298) \ln K_c \] Solving for \( \ln K_c \): \[ \ln K_c = \frac{239,360}{(8.314)(298)} = 96.5 \] Therefore: \[ K_c = e^{96.5} \quad \Rightarrow \quad \log K_c = 96.5 \, \text{(approx.)} \] Thus, \( \Delta G^\circ = -239.36 \, \text{kJ/mol} \) and \( \log K_c = 96.5 \).
Concentration of KCl solution (mol/L) | Conductivity at 298.15 K (S cm-1) | Molar Conductivity at 298.15 K (S cm2 mol-1) |
---|---|---|
1.000 | 0.1113 | 111.3 |
0.100 | 0.0129 | 129.0 |
0.010 | 0.00141 | 141.0 |
Column I | Column II |
---|---|
i. Lead storage cell | d. Inverter |
ii. Mercury cell | b. Apollo Space Programme |
iii. Dry cell | c. Wrist watch |
iv. Fuel cell | a. Wall clock |
Complete and balance the following chemical equations: (a) \[ 2MnO_4^-(aq) + 10I^-(aq) + 16H^+(aq) \rightarrow \] (b) \[ Cr_2O_7^{2-}(aq) + 6Fe^{2+}(aq) + 14H^+(aq) \rightarrow \]