The cell potential for the voltaic cell can be calculated using the Nernst equation:
\[
E_{\text{cell}} = E^\circ_{\text{cell}} - \frac{0.0592}{n} \log Q
\]
First, calculate the standard cell potential:
\[
E^\circ_{\text{cell}} = E^\circ_{\text{cathode}} - E^\circ_{\text{anode}} = (-0.25) - (-1.66) = 1.41 \, \text{V}
\]
Next, calculate the reaction quotient (Q):
\[
Q = \frac{[\text{Ni}^{2+}] \times [\text{Al}^{3+}]}{[\text{Ni}] \times [\text{Al}]}
\]
Substitute the values:
\[
Q = \frac{(0.1) \times (0.001)}{(1) \times (1)} = 0.0001
\]
Now, using the Nernst equation:
\[
E_{\text{cell}} = 1.41 - \frac{0.0592}{3} \log (0.0001) = 1.41 - \frac{0.0592}{3} \times (-4) = 1.41 + 0.0789 = 1.4889 \, \text{V}
\]
Thus, the cell voltage is 1.49 V.