To solve the problem, we need to determine the bond enthalpy of $ B_2 $ given the ratio of bond enthalpies and the bond enthalpy of formation of $ AB $. Let us proceed step by step.
Step 1: Define the variables
Let:
- The bond enthalpy of $ A_2 $ be $ x \, \text{kJ mol}^{-1} $.
- The bond enthalpy of $ B_2 $ be $ y \, \text{kJ mol}^{-1} $.
- The bond enthalpy of $ AB $ be $ z \, \text{kJ mol}^{-1} $.
From the problem, we are given:
1. The ratio of bond enthalpies is $ x : y : z = 2 : 1 : 2 $.
2. The bond enthalpy of formation of $ AB $ is $ -100 \, \text{kJ mol}^{-1} $.
Step 2: Express the bond enthalpies in terms of a common variable
Using the ratio $ x : y : z = 2 : 1 : 2 $, we can write:
$$ x = 2k, \quad y = k, \quad z = 2k $$
where $ k $ is a proportionality constant.
Step 3: Use the bond enthalpy of formation of $ AB $
The bond enthalpy of formation of $ AB $ is given by the equation:
$$ \Delta H_f = \frac{1}{2}x + \frac{1}{2}y - z $$
Substituting the values of $ x $, $ y $, and $ z $ in terms of $ k $:
$$ \Delta H_f = \frac{1}{2}(2k) + \frac{1}{2}(k) - (2k) $$
Simplify:
$$ \Delta H_f = k + \frac{k}{2} - 2k $$
Combine like terms:
$$ \Delta H_f = \frac{2k}{2} + \frac{k}{2} - \frac{4k}{2} = \frac{2k + k - 4k}{2} = \frac{-k}{2} $$
We are given that the bond enthalpy of formation of $ AB $ is $ -100 \, \text{kJ mol}^{-1} $. Therefore:
$$ \frac{-k}{2} = -100 $$
Step 4: Solve for $ k $
Multiply both sides by $ -2 $:
$$ k = 200 $$
Step 5: Determine the bond enthalpy of $ B_2 $
The bond enthalpy of $ B_2 $ is $ y = k $. From the previous step, we found $ k = 200 $. Therefore:
$$ y = 200 \, \text{kJ mol}^{-1} $$
Final Answer:
$$ {200 \, \text{kJ mol}^{-1}} $$
Thus, the correct option is:
$$ \boxed{\text{(C)}} $$
The bond enthalpies are in the ratio of 2 : 1 : 2 for A2, B2, and AB respectively. The bond enthalpy of AB formation is given as -100 KJ mol-1. Based on the given ratio, the bond enthalpy of B2 can be calculated by considering the relationship between bond enthalpies of the reactants and products. Using the given ratio, we find that the bond enthalpy of B2 is 200 KJ mol-1.
The correct answer is (C) : 200 KJ mol-1.