We can use Raoult's Law for ideal solutions:
\[
P_{\text{solution}} = P_{\text{benzene}} + P_{\text{toluene}}
\]
where:
- \( P_{\text{solution}} \) is the total vapour pressure of the solution,
- \( P_{\text{benzene}} \) is the vapour pressure of benzene in the solution,
- \( P_{\text{toluene}} \) is the vapour pressure of toluene in the solution.
Raoult's law states:
\[
P_{\text{benzene}} = x_{\text{benzene}} P^0_{\text{benzene}}, \quad P_{\text{toluene}} = x_{\text{toluene}} P^0_{\text{toluene}}
\]
where \( P^0_{\text{benzene}} = 800 \, \text{mmHg} \) and \( P^0_{\text{toluene}} = 300 \, \text{mmHg} \).
Let the mole fraction of benzene be \( x_{\text{benzene}} \) and the mole fraction of toluene be \( x_{\text{toluene}} \).
From Raoult's law:
\[
P_{\text{solution}} = x_{\text{benzene}} (800) + x_{\text{toluene}} (300)
\]
We know \( P_{\text{solution}} = 400 \, \text{mmHg} \), so:
\[
400 = 800 x_{\text{benzene}} + 300 x_{\text{toluene}}
\]
Also, since \( x_{\text{benzene}} + x_{\text{toluene}} = 1 \), we substitute \( x_{\text{toluene}} = 1 - x_{\text{benzene}} \) into the equation:
\[
400 = 800 x_{\text{benzene}} + 300(1 - x_{\text{benzene}})
\]
Simplifying the equation:
\[
400 = 800 x_{\text{benzene}} + 300 - 300 x_{\text{benzene}}
\]
\[
400 - 300 = 500 x_{\text{benzene}}
\]
\[
100 = 500 x_{\text{benzene}}
\]
\[
x_{\text{benzene}} = \frac{100}{500} = 0.2
\]
Thus, the mole fraction of benzene is 0.2, and the mole fraction of toluene is 0.8.
Thus, the correct answer is (d).