Using the mirror formula:
\[
\frac{1}{f} = \frac{1}{v} - \frac{1}{u}
\]
Substituting values:
\[
\frac{1}{-15} = \frac{1}{v} - \frac{1}{-20}
\Rightarrow \frac{1}{v} = \frac{1}{-15} + \frac{1}{20}
\]
\[
\frac{1}{v} = \frac{-4 + 3}{60} = \frac{-1}{60}
\Rightarrow v = -60\, \text{cm}
\]
Thus, the image is formed 60 cm in front of the mirror.
Since $v$ is negative:
The image is real and inverted.
It lies beyond the center of curvature.