The barrier potential of a p-n junction diode is primarily determined by the difference in work functions between the p-type and n-type materials and the intrinsic properties of the materials themselves. It does not depend on diode design. On the other hand, temperature, doping density, and forward bias voltage can influence the barrier potential.
So, the correct option is (A): diode design
The current passing through the battery in the given circuit, is:
A bob of heavy mass \(m\) is suspended by a light string of length \(l\). The bob is given a horizontal velocity \(v_0\) as shown in figure. If the string gets slack at some point P making an angle \( \theta \) from the horizontal, the ratio of the speed \(v\) of the bob at point P to its initial speed \(v_0\) is :
A full wave rectifier circuit with diodes (\(D_1\)) and (\(D_2\)) is shown in the figure. If input supply voltage \(V_{in} = 220 \sin(100 \pi t)\) volt, then at \(t = 15\) msec:
A P-N junction is an interface or a boundary between two semiconductor material types, namely the p-type and the n-type, inside a semiconductor.
in p-n junction diode two operating regions are there:
There are three biasing conditions for p-n junction diode are as follows: