Step 1: Use the formula for equivalent continuous noise level \( L_{eq} \):
\[ L_{eq} = 10 \log_{10} \left( \frac{1}{T} \sum_{i=1}^{n} t_i \cdot 10^{L_i/10} \right) \]

\[ L_{eq} = 10 \log_{10} \left( \frac{1}{40} (10 \cdot 10^8 + 30 \cdot 10^6) \right) = 10 \log_{10} \left( \frac{10^9 + 9 \cdot 10^7}{40} \right) \]
\[ = 10 \log_{10} \left( \frac{1090000000}{40} \right) \]
\[ 10 \log_{10} (27250000) \]
\[ \approx 10 \times \log_{10}(2.725 \times 10^7) \]
\[ = 10 \left( \log_{10}(2.725) + 7 \right) \]
\[ = 10 (0.435 + 7) \]
\[ = 10 \times 7.435 \]
\[ = \boxed{73.35 \approx 73} \]