The root mean square (r.m.s.) velocity \( v_{\text{rms}} \) of gas molecules is determined by the formula:
\[
v_{\text{rms}} = \sqrt{\frac{3RT}{M}},
\]
where:
- \( R \) is the universal gas constant,
- \( T \) is the absolute temperature in Kelvin,
- \( M \) is the molar mass of the gas.
Step 1: Equating \( v_{\text{rms}} \) for Hydrogen and Oxygen
For hydrogen (\( H_2 \)) and oxygen (\( O_2 \)):
\[
v_{\text{rms}}(H_2) = v_{\text{rms}}(O_2).
\]
Substitute the expression for \( v_{\text{rms}} \):
\[
\sqrt{\frac{3RT_{H_2}}{M_{H_2}}} = \sqrt{\frac{3RT_{O_2}}{M_{O_2}}}.
\]
Square both sides:
\[
\frac{T_{H_2}}{M_{H_2}} = \frac{T_{O_2}}{M_{O_2}}.
\]
Rearrange to solve for \( T_{H_2} \):
\[
T_{H_2} = T_{O_2} \cdot \frac{M_{H_2}}{M_{O_2}}.
\]
Step 2: Substitute Known Values
The temperature of oxygen gas is:
\[
T_{O_2} = 47^\circ \text{C} + 273 = 320 \, \text{K}.
\]
Molar masses are:
\[
M_{H_2} = 2, \quad M_{O_2} = 32.
\]
Substitute into the formula for \( T_{H_2} \):
\[
T_{H_2} = 320 \cdot \frac{2}{32}.
\]
Simplify:
\[
T_{H_2} = 320 \cdot \frac{1}{16} = 20 \, \text{K}.
\]
Final Answer:
\[
\boxed{20 \, \text{K}}
\]