Step 1 (Set up the angle equation).
At \(t\) minutes after \(3{:}00\), the hour hand is at \(30\times 3 + 0.5t = 90 + 0.5t^\circ\).
The minute hand is at \(6t^\circ\).
Opposite hands \(\) angle difference \(= 180^\circ\):
\[
|\, (90 + 0.5t) - 6t \,| = 180.
\]
Step 2 (Solve for \(t\)).
\(|\,90 - 5.5t\,| = 180\).
Case 1: \(90 - 5.5t = 180 -5.5t = 90 t = -16.\overline{36}\) (reject; negative).
Case 2: \(5.5t - 90 = 180 5.5t = 270 t = \dfrac{270}{5.5} = \dfrac{540}{11} = 49 \dfrac{1}{11}\ \text{min}.\)
Step 3 (Write exact time).
\(49 \dfrac{1}{11}\) minutes \(= 49\) minutes \(+\ \dfrac{60}{11}\) seconds \(= 49\) minutes \(+\ 5.\overline{45}\) seconds.
So time \(\approx 3{:}49{:}05\ \text{PM}\).
Step 4 (Compare with options).
None of the choices matches \(3{:}49\frac{1}{11}\ \text{PM}\). The closest given option is \(3{:}45\ \text{PM}\), but it is not exact.
\[
{3{:}49\frac{1}{11}\ \text{PM (not among options)}}
\]