Step 1: Use Dalton’s Law of Partial Pressures.
Given:
\[
P_{\text{total}} = 2 \, \text{bar}, \quad P_{\text{H}_2} = 1.778 \, \text{bar}
\]
So,
\[
P_{\text{O}_2} = 2 - 1.778 = 0.222 \, \text{bar}
\]
Step 2: Assume ideal gas behavior and equal volume, use molar ratio based on pressure.
\[
\text{Moles of H}_2 \propto 1.778, \quad \text{Moles of O}_2 \propto 0.222
\]
Step 3: Convert to masses.
\[
\text{Mass of H}_2 = 1.778 \times 2 = 3.556 \, \text{g} \quad (\text{since molar mass of H}_2 = 2)
\]
\[
\text{Mass of O}_2 = 0.222 \times 32 = 7.104 \, \text{g} \quad (\text{since molar mass of O}_2 = 32)
\]
Step 4: Calculate w/w % of H\(_2\).
\[
\frac{3.556}{3.556 + 7.104} \times 100 = \frac{3.556}{10.66} \times 100 \approx 33.33\%
\]