At equilibrium for the reaction $ A_2 (g) + B_2 (g) \rightleftharpoons 2AB (g) $, the concentrations of $ A_2 $, $ B_2 $, and $ AB $ respectively are $ 1.5 \times 10^{-3} M $, $ 2.1 \times 10^{-3} M $, and $ 1.4 \times 10^{-3} M $. What will be $ K_p $ for the decomposition of $ AB $ at the same temperature?
The equilibrium constant for decomposition of $ H_2O $ (g) $ H_2O(g) \rightleftharpoons H_2(g) + \frac{1}{2} O_2(g) \quad (\Delta G^\circ = 92.34 \, \text{kJ mol}^{-1}) $ is $ 8.0 \times 10^{-3} $ at 2300 K and total pressure at equilibrium is 1 bar. Under this condition, the degree of dissociation ($ \alpha $) of water is _____ $\times 10^{-2}$ (nearest integer value). [Assume $ \alpha $ is negligible with respect to 1]
The mass of particle X is four times the mass of particle Y. The velocity of particle Y is four times the velocity of X. The ratio of de Broglie wavelengths of X and Y is: