We are given \( E^\ominus_{cell} = 1.0 \) V, \( \Delta_r S^\ominus = 100 \) J K\(^{
-1}\), and \( T = 300 \) K. We need to find \( \Delta_r H^\ominus \).
First, we find \( \Delta_r G^\ominus \) using the formula:
\[
\Delta_r G^\ominus =
-nFE^\ominus_{cell}
\]
where \( n \) is the number of electrons transferred, which is 2 in this case.
\[
\Delta_r G^\ominus =
-2 \times 96500 \text{ C mol}^{
-1} \times 1.0 \text{ V} =
-193000 \text{ J mol}^{
-1} =
-193 \text{ kJ mol}^{
-1}
\]
Now, we use the Gibbs
-Helmholtz equation:
\[
\Delta_r G^\ominus = \Delta_r H^\ominus
- T\Delta_r S^\ominus
\]
Rearranging for \( \Delta_r H^\ominus \):
\[
\Delta_r H^\ominus = \Delta_r G^\ominus + T\Delta_r S^\ominus
\]
Substituting the given values:
\[
\Delta_r H^\ominus =
-193000 \text{ J mol}^{
-1} + 300 \text{ K} \times 100 \text{ J K}^{
-1} \text{mol}^{
-1}
\]
\[
\Delta_r H^\ominus =
-193000 \text{ J mol}^{
-1} + 30000 \text{ J mol}^{
-1} =
-163000 \text{ J mol}^{
-1} =
-163 \text{ kJ mol}^{
-1}
\]