Step 1: Using the Relative Lowering of Vapour Pressure Formula
\[
\frac{P^0 - P}{P^0} = \frac{n_B}{n_A}
\]
where,
\( P^0 \) = vapour pressure of pure water = 3.78 kPa
\( P \) = vapour pressure of solution = 3.768 kPa
\( n_B \) = moles of solute
\( n_A \) = moles of solvent
Step 2: Calculating Moles of Water
\[
n_A = \frac{1000}{18} = 55.56 \text{ moles}
\]
Step 3: Calculating Molar Mass of Solute
\[
\frac{3.78 - 3.768}{3.78} = \frac{\frac{0.06}{M}}{55.56}
\]
Solving for \( M \),
\[
M = 340 \text{ g/mol}
\]
Thus, the molar mass of the solute is 340 g/mol.
\bigskip