Step 1: Write the cell reaction.
\[ Ni (s) + Cu^{2+} (aq) \;\longrightarrow\; Ni^{2+} (aq) + Cu (s) \]
Step 2: Nernst equation.
General Nernst equation: \[ E_{cell} = E^\circ_{cell} - \frac{0.0591}{n} \log Q \] where, $n = 2$ (electrons transferred)
$Q = \dfrac{[Ni^{2+}]}{[Cu^{2+}]} = \dfrac{0.01}{0.1} = 0.1$
Step 3: Substitution.
\[ E_{cell} = E^\circ_{cell} - \frac{0.0591}{2} \log (0.1) \] \[ E_{cell} = E^\circ_{cell} - 0.02955 \times (-1) \] \[ E_{cell} = E^\circ_{cell} + 0.02955 \]
Step 4: Calculate $E^\circ_{cell$.}
Given: $E_{cell} = 0.59 \, V$ \[ 0.59 = E^\circ_{cell} + 0.02955 \] \[ E^\circ_{cell} = 0.59 - 0.02955 \] \[ E^\circ_{cell} \approx 0.56 \, V \]
Conclusion:
The standard emf of the cell is: \[ \boxed{0.56 \, V} \]
If the molar conductivity ($\Lambda_m$) of a 0.050 mol $L^{–1}$ solution of a monobasic weak acid is 90 S $cm^{2} mol^{–1}$, its extent (degree) of dissociation will be:
[Assume: $\Lambda^0$ = 349.6 S $cm^{2} mol^{–1}$ and $\Lambda^0_{\text{acid}}$ = 50.4 S$ cm^{2} mol^{–1}$]