Step 1: Identify Anode and Cathode Half-Reactions and Write the Overall Cell Reaction
The cell notation is Pt, \( \text{H}_2(1 \text{ atm})|\text{H}^+(\text{aq}) || \text{Ag}^+(1 \text{ M})|\text{Ag}(\text{s}) \).
The double vertical lines ($||$) represent the salt bridge. The left side is the anode (oxidation) and the right side is the cathode (reduction).
\begin{itemize}
\item Anode (Oxidation): Hydrogen electrode
\[
\text{H}_2(\text{g}) \rightarrow 2\text{H}^+(\text{aq}) + 2e^-
\]
The standard reduction potential for this half-reaction is given as $\text{E}^{\circ}_{2\text{H}^+|\text{H}_2} = 0.0 \text{ V}$.
\item Cathode (Reduction): Silver electrode
\[
\text{Ag}^+(\text{aq}) + e^- \rightarrow \text{Ag}(\text{s})
\]
The standard reduction potential for this half-reaction is given as $\text{E}^{\circ}_{\text{Ag}^+|\text{Ag}} = 0.80 \text{ V}$.
\end{itemize}
To balance the electrons, multiply the cathode reaction by 2:
\[
2\text{Ag}^+(\text{aq}) + 2e^- \rightarrow 2\text{Ag}(\text{s})
\]
Overall Cell Reaction:
Add the balanced half-reactions:
\[
\text{H}_2(\text{g}) + 2\text{Ag}^+(\text{aq}) \rightarrow 2\text{H}^+(\text{aq}) + 2\text{Ag}(\text{s})
\]
Step 2: Calculate the Standard Cell Potential (\( \text{E}^{\circ}_{\text{cell}} \))
\[
\text{E}^{\circ}_{\text{cell}} = \text{E}^{\circ}_{\text{cathode}} - \text{E}^{\circ}_{\text{anode}}
\]
\[
\text{E}^{\circ}_{\text{cell}} = \text{E}^{\circ}_{\text{Ag}^+|\text{Ag}} - \text{E}^{\circ}_{\text{H}^+|\text{H}_2}
\]
\[
\text{E}^{\circ}_{\text{cell}} = 0.80 \text{ V} - 0.0 \text{ V} = 0.80 \text{ V}
\]
Step 3: Apply the Nernst Equation
The Nernst equation at 298 K is:
\[
\text{E}_{\text{cell}} = \text{E}^{\circ}_{\text{cell}} - \frac{0.0592}{n} \log Q
\]
Where:
\begin{itemize}
\item $\text{E}_{\text{cell}}$ is the measured cell potential ($0.87 \text{ V}$).
\item $\text{E}^{\circ}_{\text{cell}}$ is the standard cell potential ($0.80 \text{ V}$).
\item $n$ is the number of moles of electrons transferred in the balanced reaction ($n=2$).
\item $Q$ is the reaction quotient.
\end{itemize}
For the reaction $\text{H}_2(\text{g}) + 2\text{Ag}^+(\text{aq}) \rightarrow 2\text{H}^+(\text{aq}) + 2\text{Ag}(\text{s})$, the reaction quotient $Q$ is:
\[
Q = \frac{[\text{H}^+]^2 \times (\text{activity of Ag(s)})^2}{(\text{partial pressure of H}_2) \times [\text{Ag}^+]^2}
\]
Since the activity of pure solids is 1 and the partial pressure of $\text{H}_2$ is $1 \text{ atm}$:
\[
Q = \frac{[\text{H}^+]^2}{1 \times [\text{Ag}^+]^2} = \frac{[\text{H}^+]^2}{[\text{Ag}^+]^2}
\]
Given $[\text{Ag}^+] = 1 \text{ M}$:
\[
Q = \frac{[\text{H}^+]^2}{(1)^2} = [\text{H}^+]^2
\]
Substitute the values into the Nernst equation:
\[
0.87 = 0.80 - \frac{0.0592}{2} \log ([\text{H}^+]^2)
\]
\[
0.87 - 0.80 = - \frac{0.0592}{2} (2 \log [\text{H}^+])
\]
\[
0.07 = - 0.0592 \log [\text{H}^+]
\]
Step 4: Relate \( \log [\text{H}^+] \) to pH and Calculate pH
Recall that $\text{pH} = -\log [\text{H}^+]$.
So, the equation becomes:
\[
0.07 = 0.0592 \times \text{pH}
\]
Solve for pH:
\[
\text{pH} = \frac{0.07}{0.0592}
\]
\[
\text{pH} \approx 1.1824
\]
Rounding to two decimal places, $\text{pH} \approx 1.18$.
Step 5: Analyze Options
\begin{itemize}
\item Option (1): 2.18. Incorrect.
\item Option (2): 3.18. Incorrect.
\item Option (3): 1.18. Correct, as it matches our calculated pH.
\item Option (4): 1.09. Incorrect.
\end{itemize}