For an ideal gas, the root mean square speed is $v_{\text{rms}} = \sqrt{\frac{3RT}{M}}$, and the most probable speed is $v_{\text{mp}} = \sqrt{\frac{2RT}{M}}$.
Given $v_{\text{rms}} = 3.16 \times 10^2$ m/s:
\[
\frac{v_{\text{mp}}}{v_{\text{rms}}} = \sqrt{\frac{2RT/M}{3RT/M}} = \sqrt{\frac{2}{3}}
\]
\[
v_{\text{mp}} = v_{\text{rms}} \times \sqrt{\frac{2}{3}} = (3.16 \times 10^2) \times \sqrt{\frac{2}{3}}
\]
\[
\sqrt{\frac{2}{3}} \approx 0.8165, \quad v_{\text{mp}} = (3.16 \times 10^2) \times 0.8165 \approx 2.58 \times 10^2 \text{ m/s}.
\]
This matches option (2).