Given below are two statements:
Statement (II): Structure III is most stable, as the orbitals having the lone pairs are axial, where the $ \ell p - \beta p $ repulsion is minimum. In light of the above statements, choose the most appropriate answer from the options given below:
Consider the following statements:
Statement-I: The products formed when diborane burns in air are \({B}_2{O}_3\), \({H}_2\), and \({O}_2\).
Statement-II: Hybridization of boron atom in orthoboric acid is \(sp^2\). The correct answer is:
A few species are given in Column I. Column II contains the hybrid orbitals used by the central atom of the species for bonding.
The CORRECT match for the species to their central atom hybridization is:
(Given: Atomic numbers of B: 5; C: 6; O: 8; F: 9; P: 15; Cl: 17; I: 53)
In C language, mat[i][j] is equivalent to: (where mat[i][j] is a two-dimensional array)
Suppose a minimum spanning tree is to be generated for a graph whose edge weights are given below. Identify the graph which represents a valid minimum spanning tree?
\[\begin{array}{|c|c|}\hline \text{Edges through Vertex points} & \text{Weight of the corresponding Edge} \\ \hline (1,2) & 11 \\ \hline (3,6) & 14 \\ \hline (4,6) & 21 \\ \hline (2,6) & 24 \\ \hline (1,4) & 31 \\ \hline (3,5) & 36 \\ \hline \end{array}\]
Choose the correct answer from the options given below:
Match LIST-I with LIST-II
Choose the correct answer from the options given below:
Consider the following set of processes, assumed to have arrived at time 0 in the order P1, P2, P3, P4, and P5, with the given length of the CPU burst (in milliseconds) and their priority:
\[\begin{array}{|c|c|c|}\hline \text{Process} & \text{Burst Time (ms)} & \text{Priority} \\ \hline \text{P1} & 10 & 3 \\ \hline \text{P2} & 1 & 1 \\ \hline \text{P3} & 4 & 4 \\ \hline \text{P4} & 1 & 2 \\ \hline \text{P5} & 5 & 5 \\ \hline \end{array}\]
Using priority scheduling (where priority 1 denotes the highest priority and priority 5 denotes the lowest priority), find the average waiting time.