We need to approximate the integral using Simpson’s Rule:
\[
\int_1^3 \frac{x}{1+x}\,dx
\]
Simpson’s rule formula is:
\[
\int_a^b f(x)dx \approx \frac{h}{3}[f(x_0)+4f(x_1)+f(x_2)]
\]
Here, \(a =1\), \(b=3\), \(h=1\), and the points are \(x_0 =1\), \(x_1 =2\), \(x_2 =3\).
Now compute function values:
\(f(1)= \frac{1}{2} = 0.5\)
\(f(2)= \frac{2}{3}\)
\(f(3)= \frac{3}{4} = 0.75\)
Apply Simpson’s rule:
\[
\frac{1}{3}\left(0.5 + 4\cdot\frac{2}{3} + 0.75\right)
\]
\[
= \frac{1}{3}(0.5 + 2.6667 + 0.75)
\]
\[
= \frac{3.9167}{3} = 1.3056
\]
Rounded to two decimals, this is 1.31.
Final Answer: 1.31