The projection of \( \vec{a} \) on \( \vec{b} \) is:
\[
{Proj}_{\vec{b}} (\vec{a}) = \frac{\vec{a} \cdot \vec{b}}{\|\vec{b}\|^2} \vec{b}.
\]
The projection of \( \vec{b} \) on \( \vec{a} \) is:
\[
{Proj}_{\vec{a}} (\vec{b}) = \frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\|^2} \vec{a}.
\]
Clearly, the two projections are not the same unless \( \|\vec{a}\| = \|\vec{b}\| \).
The angle between \( \vec{a} \) and \( \vec{b} \) is the same as the angle between \( \vec{b} \) and \( \vec{a} \), as the cosine function is symmetric. Thus, the reason is true.
Final Answer: \( \boxed{{[(D)] Assertion (A) is false, but Reason (R) is true.}} \)