Assertion (A):
\( f(x) = \begin{cases} 3x - 8, & x \leq 5 \\ 2k, & x > 5 \end{cases} \)
is continuous at \( x = 5 \) for \( k = \frac{5}{2} \).
Reason (R):
For a function \( f \) to be continuous at \( x = a \),
\[ \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = f(a) \]
For the function to be continuous at \( x = 5 \), we need to check whether the left-hand limit (\( \lim\limits_{x \to 5^-} f(x) \)), the right-hand limit (\( \lim\limits_{x \to 5^+} f(x) \)), and the function value at \( x = 5 \) are all equal.
For \( f(x) \) to be continuous at \( x = 5 \), the following must hold:
\[ \lim\limits_{x \to 5^-} f(x) = \lim\limits_{x \to 5^+} f(x) = f(5) \]
So we equate:
\[ 2k = 7 \Rightarrow k = \frac{7}{2} \]
The given assertion claims continuity at \( x = 5 \) for \( k = \frac{5}{2} \), which is incorrect. Hence:
Final Answer: Assertion is false, but Reason is true.
If the domain of the function \[ f(x)=\log\left(10x^2-17x+7\right)\left(18x^2-11x+1\right) \] is $(-\infty,a)\cup(b,c)\cup(d,\infty)-\{e\}$, then $90(a+b+c+d+e)$ equals

A ladder of fixed length \( h \) is to be placed along the wall such that it is free to move along the height of the wall.
Based upon the above information, answer the following questions:
(iii) (b) If the foot of the ladder, whose length is 5 m, is being pulled towards the wall such that the rate of decrease of distance \( y \) is \( 2 \, \text{m/s} \), then at what rate is the height on the wall \( x \) increasing when the foot of the ladder is 3 m away from the wall?