Problem Summary: A solid sphere of mass \( M \) and radius \( R \) has two spherical cavities (each of radius \( R/2 \)) carved such that they touch at the center. A point mass \( m \) lies on the axis of symmetry at a distance \( d \) from the center of the sphere (\( d > R \)). Find the net gravitational force on \( m \).
The net gravitational force is:
Density of original sphere:
\[ \rho = \frac{M}{\frac{4}{3}\pi R^3} \]
Volume of each cavity \( V_{\text{cav}} = \frac{4}{3}\pi \left(\frac{R}{2}\right)^3 = \frac{1}{8} \cdot \frac{4}{3}\pi R^3 \)
Mass of each cavity if it were filled:
\[ M_{\text{cav}} = \rho \cdot V_{\text{cav}} = \frac{M}{8} \]
By superposition:
\[ F_{\text{net}} = \frac{GMm}{d^2} - \frac{GMm}{8(d + R/2)^2} - \frac{GMm}{8(d - R/2)^2} \]
Factor \( \frac{GMm}{d^2} \):
\[ F_{\text{net}} = \frac{GMm}{d^2} \left[ 1 - \frac{d^2}{8(d + R/2)^2} - \frac{d^2}{8(d - R/2)^2} \right] \]
Convert into normalized form:
\[ F_{\text{net}} = \frac{GMm}{d^2} \left[ 1 - \frac{1}{8\left(1 + \frac{R}{2d}\right)^2} - \frac{1}{8\left(1 - \frac{R}{2d}\right)^2} \right] \]
This matches option (a).