To solve the problem of arranging the numbers in increasing order, we need to compare each expression given in the problem:
- Expression A: \(\sqrt{59} - \sqrt{51}\)
- Expression B: \(\sqrt{37} - \sqrt{29}\)
- Expression C: \(\sqrt{87} - \sqrt{79}\)
- Expression D: \(\sqrt{79} - \sqrt{71}\)
We will approximate the square roots of the numbers to compare these expressions:
- \(\sqrt{59} \approx 7.68\)
- \(\sqrt{51} \approx 7.14\)
- \(\sqrt{37} \approx 6.08\)
- \(\sqrt{29} \approx 5.38\)
- \(\sqrt{87} \approx 9.33\)
- \(\sqrt{79} \approx 8.89\)
- \(\sqrt{71} \approx 8.43\)
Now let's calculate the differences:
- Difference A: \(\sqrt{59} - \sqrt{51} \approx 7.68 - 7.14 = 0.54\)
- Difference B: \(\sqrt{37} - \sqrt{29} \approx 6.08 - 5.38 = 0.70\)
- Difference C: \(\sqrt{87} - \sqrt{79} \approx 9.33 - 8.89 = 0.44\)
- Difference D: \(\sqrt{79} - \sqrt{71} \approx 8.89 - 8.43 = 0.46\)
Therefore, the order of the differences from smallest to largest is:
- \(C: 0.44\)
- \(D: 0.46\)
- \(A: 0.54\)
- \(B: 0.70\)
Thus, the correct order is \(C < D < A < B\), which corresponds to the answer: \(C < D < A < B\).