Question:

Arrange the following in decreasing order of number of molecules contained in:
(A) 16 g of \( O_2 \) 
(B) 16 g of \( CO_2 \) 
(C) 16 g of \( CO \) 
(D) 16 g of \( H_2 \) 

Show Hint

To determine the number of molecules in a given mass of a substance, use the formula \( \text{moles} = \frac{\text{mass}}{\text{molar mass}} \) and multiply by Avogadro's number \( N_A \). The substance with the smallest molar mass will have the largest number of molecules.
Updated On: May 14, 2025
  • D>B>C>A

  • D>A>B>C

  • A>D>C>B

  • D>A>C>B

Hide Solution
collegedunia
Verified By Collegedunia

The Correct Option is D

Solution and Explanation

To determine the order of the number of molecules contained in 16 g of each compound, we need to calculate the number of moles for each and then use Avogadro's number to find the actual number of molecules. We use the formula:

\[\text{Number of moles} = \frac{\text{Given mass (g)}}{\text{Molar mass (g/mol)}}\]

CompoundMolar Mass (g/mol)Number of Moles
\(O_2\)32\( \frac{16}{32} = 0.5 \)
\(CO_2\)44\( \frac{16}{44} \approx 0.364 \)
\(CO\)28\( \frac{16}{28} \approx 0.571 \)
\(H_2\)2\( \frac{16}{2} = 8 \)

Now, convert moles to number of molecules using Avogadro's number, \(6.022 \times 10^{23}\).

  • \(O_2\): \(0.5 \times 6.022 \times 10^{23} \approx 3.011 \times 10^{23}\) molecules
  • \(CO_2\): \(0.364 \times 6.022 \times 10^{23} \approx 2.192 \times 10^{23}\) molecules
  • \(CO\): \(0.571 \times 6.022 \times 10^{23} \approx 3.439 \times 10^{23}\) molecules
  • \(H_2\): \(8 \times 6.022 \times 10^{23} \approx 48.176 \times 10^{23}\) molecules

Arranging in decreasing order, the number of molecules is: \(H_2 > O_2 > CO > CO_2\). 
Therefore, the correct arrangement is:

D>A>C>B

Was this answer helpful?
0
0