Arrange the following fractions in descending order
\(p=\frac{4}{5}\) ,\(q=\frac{5}{7}\) ,\(r=\frac{4}{3}\) , \(s=\frac{9}{8}\) , \(t=\frac{4}{7}\)
\(r>s>p>q>t\)
\(t>s>q>p>r\)
\(r>t>s>p>q\)
\(q>t>r>s>p\)
To arrange the fractions \(p=\frac{4}{5}\) ,\(q=\frac{5}{7}\) ,\(r=\frac{4}{3}\) , \(s=\frac{9}{8}\) , \(t=\frac{4}{7}\) in descending order, we can convert them to decimals for easier comparison
\(p=\frac{4}{5}=0.8\)
\(q=\frac{5}{7}\approx0.7143\)
\(r=\frac{4}{3}\approx1.3333\)
\(s=\frac{9}{8}=1.125\)
\(t=\frac{4}{7}\approx0.5714\)
Now, we can compare the decimal values:
\(r\approx1.3333\)
\(s=1.125\)
\(p=0.8\)
\(q\approx0.7143\)
\(t\approx0.7143\)
Arranging these from largest to smallest gives us:
Descending order: \(r>s>p>q>t\)
The correct option is (A):\(r>s>p>q>t\)