Total cost for Aron: \( ax + by \)
Total cost for Aditya: \( 2a x + (b - 10) y \)
Given that they spend the same: \[ ax + by = 2ax + (b - 10)y \] Substitute \( x = y - 2 \): \[ a(y - 2) + by = 2a(y - 2) + (b - 10)y \]
\[ ay - 2a + by = 2ay - 4a + by - 10y \] Subtract \( by \) from both sides: \[ ay - 2a = 2ay - 4a - 10y \] Bring everything to one side: \[ ay - 2a - 2ay + 4a + 10y = 0 \Rightarrow -ay + 2a + 10y = 0 \] \[ \Rightarrow a(y - 2) = 10y \quad \text{(Equation 1)} \]
\[ a = \frac{10y}{y - 2} \] We want the smallest positive integer \( a \), so test values of \( y \) such that \( \frac{10y}{y - 2} \in \mathbb{Z} \) Try \( y = 22 \): \[ a = \frac{10 \times 22}{20} = \frac{220}{20} = 11 \quad \text{✓ Valid} \]
\[ \text{Total pencils} = a + 2a = 3a = 3 \times 11 = \boxed{33} \]
Let:
Total cost for Aron: \[ \text{Aron’s total cost} = pa + sb \]
Aditya buys:
So total cost: \[ \text{Aditya’s total cost} = 2pa + (s - 10)b \]
Given that both spend the same: \[ pa + sb = 2pa + (s - 10)b \] Simplifying: \[ pa + sb = 2pa + sb - 10b \Rightarrow pa = 10b \quad \text{(Equation 1)} \]
The sharpener costs ₹2 more than a pencil: \[ b = a + 2 \quad \text{(Equation 2)} \] Substitute in Equation 1: \[ pa = 10(a + 2) \Rightarrow pa = 10a + 20 \] Bring terms together: \[ pa - 10a = 20 \Rightarrow a(p - 10) = 20 \Rightarrow a = \frac{20}{p - 10} \]
We need \( p \) and \( a \) both to be integers. Try smallest integer values of \( p > 10 \) such that \( a \) is also integer: \[ \begin{align*} p = 11 &\Rightarrow a = \frac{20}{1} = 20 \ (\text{✓}) \\ p = 12 &\Rightarrow a = \frac{20}{2} = 10 \ (\text{✓}) \\ p = 15 &\Rightarrow a = \frac{20}{5} = 4 \ (\text{✓}) \\ \end{align*} \] But we want the **smallest** value of \( p \), so choose \( p = 11 \).
Total pencils = Aron's pencils + Aditya's pencils = \( p + 2p = 3p = 3 \times 11 = 33 \)
The total number of pencils bought is: \( \boxed{33} \)
When $10^{100}$ is divided by 7, the remainder is ?