Consider a directed graph \( G = (V,E) \), where \( V = \{0,1,2,\dots,100\} \) and
\[ E = \{(i,j) : 0 < j - i \leq 2, \text{ for all } i,j \in V \}. \] Suppose the adjacency list of each vertex is in decreasing order of vertex number, and depth-first search (DFS) is performed at vertex 0. The number of vertices that will be discovered after vertex 50 is:
Create empty stack S Set x = 0, flag = 0, sum = 0 Push x onto S while (S is not empty){ if (flag equals 0){ Set x = x + 1 Push x onto S } if (x equals 8): Set flag = 1 if (flag equals 1){ x = Pop(S) if (x is odd): Pop(S) Set sum = sum + x } } Output sumThe value of \( sum \) output by a program executing the above pseudocode is:
LIST I | LIST II |
---|---|
A. Stack | IV. LIFO |
B. EOF | III. Exception |
C. Tree | II. Non-linear Data Structure |
D. Queue | I. FIFO |