1440
1176
1680
2520
Ankita has:
Total quantity = \( 4 + 14 + 6 = 24 \) kg
She plans to earn a total profit of ₹1752.
Assume the average cost price of the mixture is \( x \) rupees/kg.
So, marked price = \( x + 73 \) rupees/kg
Ankita sells:
Total Selling Price = \[ 4(x + 73) + 0.8 \times 20(x + 73) = 4(x + 73) + 16(x + 73) \] \[ = 20(x + 73) \]
Given total profit is ₹1752:
\[ \text{Profit} = \text{Selling Price} - \text{Cost Price} \] \[ 1752 = 20(x + 73) - \text{Cost Price} \] \[ \text{Cost Price} = 20x + 1460 - 1752 = 20x - 292 \]
We know:
\[ 7C = 30P = 9A \]
Let all equal ₹630k (a constant multiple), then:
\[ C = \frac{630k}{7} = 90k, \quad P = \frac{630k}{30} = 21k, \quad A = \frac{630k}{9} = 70k \]
Total cost = \[ 4C + 14P + 6A = 4(90k) + 14(21k) + 6(70k) \] \[ = 360k + 294k + 420k = 1074k \]
Given: Total cost = ₹4296
\[ 1074k = 4296 \Rightarrow k = \frac{4296}{1074} = 4 \]
Since \( A = 70k = 70 \times 4 = ₹280 \), and Ankita had 6 kg of almonds: \[ \text{Total almond cost} = 6 \times 280 = ₹1680 \]
Answer: ₹1680
Ankita bought:
The cost ratio is given as:
\[ 7C = 30P = 9A \]
Let: \[ 7C = 30P = 9A = 630k \]
Then, \[ C = 90k,\quad P = 21k,\quad A = 70k \]
\[ \text{Cost Price} = 4C + 14P + 6A \] \[ = 4(90k) + 14(21k) + 6(70k) = 360k + 294k + 420k = 1074k \]
Profit intended = ₹1752
\[ \text{Marked Price} = \text{Cost Price} + \text{Profit} = 1074k + 1752 \]
She sold:
Selling Price:
\[ \frac{1}{6}(1074k + 1752) + \frac{4}{5} \cdot \frac{5}{6}(1074k + 1752) = \frac{5}{6}(1074k + 1752) \]
Profit = Selling Price - Cost Price
\[ \frac{5}{6}(1074k + 1752) - 1074k = 744 \]
Compute \(\frac{1074k}{6} = 716\)
\[ \Rightarrow k = \frac{716 \times 6}{1074} = 4 \]
\[ \text{Cost of almonds} = 6A = 6 \times 70k = 420k \] \[ \text{Putting } k = 4 \Rightarrow 420 \times 4 = ₹1680 \]
Therefore, the correct answer is: ₹1680