The correct answer is option (C) : 3m
In elastic collision kinetic energy and momentum are conserved.
Let \({{u}_{1}}\) be the initial velocity of a particle before the collision and \({{v}_{1}}\)
the final velocity after collision, then change in kinetic energy is given by
\(\frac{1}{2}{{m}_{1}}u_{1}^{2}-\frac{1}{2}{{m}_{1}}v_{1}^{2}=\frac{75}{100}\times \frac{1}{2}{{m}_{1}}u_{1}^{2}\)
\(\Rightarrow\) \(u_{1}^{2}-v_{1}^{2}=\frac{3}{4}u_{1}^{2}\)
\(\Rightarrow\) \({{v}_{1}}=\frac{1}{2}{{u}_{1}}\)
Also from the conservation of momentum, we have
\({{v}_{1}}=\frac{({{m}_{2}}-{{m}_{1}}){{u}_{1}}}{({{m}_{1}}+{{m}_{2}})}\)
\(Thus,\)\(\frac{1}{2}{{u}_{1}}=\frac{({{m}_{2}}-{{m}_{1}}){{u}_{1}}}{{{m}_{1}}+{{m}_{2}}}\)
\(\Rightarrow\) \({{m}_{2}}=3{{m}_{1}}=3m\)