\[x^2+4xh=P^2\]
\[h=\frac{P^2-x^2}{4x}\]
\[V=x^2h=x^2\left(\frac{P^2-x^2}{4x}\right)=\frac{x(P^2-x^2)}{4}\]
\[\frac{dV}{dx}=\frac{P^2}{4}-\frac{3x^2}{4}\]
Setting \(\frac{dV}{dx}=0\):
\[\frac{P^2}{4}=\frac{3x^2}{4}\Rightarrow x^2=\frac{P^2}{3}\Rightarrow x=\frac{P}{\sqrt{3}}\]
\[h=\frac{P^2-\left(\frac{P^2}{3}\right)}{4\left(\frac{P}{\sqrt{3}}\right)}=\frac{2P}{\sqrt{3}\cdot4}=\frac{P\sqrt{3}}{6}\]
\[V=\frac{\left(\frac{P}{\sqrt{3}}\right)^2\cdot\left(\frac{P\sqrt{3}}{6}\right)}{4}=\frac{P^3\cdot\sqrt{3}}{6\cdot 3\sqrt{3}}=\frac{P^3}{6\sqrt{3}}\]
Thus, the maximum volume of the box is \(\frac{P^3}{6\sqrt{3}}\).