
For calculating work done there must be displacement but since in this example vertical displacement is zero (as initial and final points lie on the same horizontal line) so the work done by force of gravity is zero.

A driver of a car travelling at \(52\) \(km \;h^{–1}\) applies the brakes Shade the area on the graph that represents the distance travelled by the car during the period.
Which part of the graph represents uniform motion of the car?
| A | B |
|---|---|
| (i) broke out | (a) an attitude of kindness, a readiness to give freely |
| (ii) in accordance with | (b) was not able to tolerate |
| (iii) a helping hand | (c) began suddenly in a violent way |
| (iv) could not stomach | (d) assistance |
| (v) generosity of spirit | (e) persons with power to make decisions |
| (vi) figures of authority | (f) according to a particular rule, principle, or system |
ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal (see Fig). Show that
(i) ∆ ABE ≅ ∆ ACF
(ii) AB = AC, i.e., ABC is an isosceles triangle.

Work is the product of the component of the force in the direction of the displacement and the magnitude of this displacement.
W = Force × Distance
Where,
Work (W) is equal to the force (f) time the distance.
W = F d Cos θ
Where,
W = Amount of work, F = Vector of force, D = Magnitude of displacement, and θ = Angle between the vector of force and vector of displacement.
The SI unit for the work is the joule (J), and it is defined as the work done by a force of 1 Newton in moving an object for a distance of one unit meter in the direction of the force.
Work formula is used to measure the amount of work done, force, or displacement in any maths or real-life problem. It is written as in Newton meter or Nm.