Step 1: Identify the given values and sign conventions.
Object distance \( u = -30 \, cm \) (concave lens)
Focal length \( f = -20 \, cm \) (concave lens)
We need to find the image distance \( v \).
Step 2: Apply the lens formula.
\[
\frac{1}{f} = \frac{1}{v} - \frac{1}{u}
\]
Step 3: Substitute the values and solve for \( v \).
\[
\frac{1}{-20} = \frac{1}{v} - \frac{1}{-30}
\]
\[
-\frac{1}{20} = \frac{1}{v} + \frac{1}{30}
\]
\[
\frac{1}{v} = -\frac{1}{20} - \frac{1}{30} = -\frac{3}{60} - \frac{2}{60} = -\frac{5}{60} = -\frac{1}{12}
\]
\[
v = -12 \, cm
\]
The image distance is \( -12 \, cm \), indicating a virtual image on the same side as the object. The magnitude is \( 12 \, cm \).