Step 1: Recall the lens maker's formula.
The lens maker's formula for a thin lens is:
\[ \frac{1}{f} = (n - 1) \left( \frac{1}{R_1} - \frac{1}{R_2} \right), \]
where:
Step 2: Substitute the given values.
For a double concave lens:
Substitute into the formula:
\[ \frac{1}{f} = (1.5 - 1) \left( \frac{1}{-30} - \frac{1}{45} \right). \]
Simplify:
\[ \frac{1}{f} = 0.5 \left( -\frac{1}{30} - \frac{1}{45} \right). \]
Find a common denominator for the fractions:
\[ -\frac{1}{30} - \frac{1}{45} = -\frac{3}{90} - \frac{2}{90} = -\frac{5}{90} = -\frac{1}{18}. \]
Substitute back:
\[ \frac{1}{f} = 0.5 \cdot \left( -\frac{1}{18} \right) = -\frac{1}{36}. \]
Invert to find \( f \):
\[ f = -36 \, \text{cm}. \]
Final Answer: The focal length is \( \mathbf{-36 \, \text{cm}} \), which corresponds to option \( \mathbf{(4)} \).