Step 1: Number of Moles of Gas.
Using the ideal gas law:
\[
n = \frac{P_{{initial}} V_{{initial}}}{R T_{{initial}}}
\]
Where:
- \( P_{{initial}} = 1 \, {bar} = 10^5 \, {Pa} \)
- \( V_{{initial}} = 0.002 \, {m}^3 \)
- \( T_{{initial}} = 300 \, {K} \)
- \( R = 8.314 \, {J/mol·K} \)
\[
n = \frac{(10^5 \, {Pa})(0.002 \, {m}^3)}{(8.314 \, {J/mol·K})(300 \, {K})} \approx 0.0802 \, {mol}
\]
Step 2: Work Done by the Gas.
The work done by the gas due to the spring is:
\[
W = \frac{1}{2} k x_{{final}}^2
\]
Where \( x_{{final}} \) is found using the spring force:
\[
x_{{final}} = \frac{P_{{ambient}} A}{k} = \frac{(10^5 \, {Pa})(1 \times 10^{-3} \, {m}^2)}{10000 \, {N/m}} = 0.01 \, {m}
\]
Thus, the work done by the gas is:
\[
W = \frac{1}{2} (10000 \, {N/m})(0.01 \, {m})^2 = 0.5 \, {J}
\]
Step 3: Applying the First Law of Thermodynamics.
The first law of thermodynamics is:
\[
\Delta U = Q - W
\]
For an ideal gas, the change in internal energy \( \Delta U \) is:
\[
\Delta U = n C_V \Delta T = n \left( \frac{3}{2} R \right) (T_{{final}} - T_{{initial}})
\]
Substituting the known values:
\[
n \left( \frac{3}{2} R \right) (T_{{final}} - T_{{initial}}) = Q - W
\]
\[
(0.0802 \, {mol}) \left( \frac{3}{2} \times 8.314 \, {J/(mol·K)} \right) (T_{{final}} - 300) = 362.5 - 0.5
\]
\[
(0.0802 \times 12.471) (T_{{final}} - 300) = 362
\]
\[
1.0002 (T_{{final}} - 300) = 362
\]
\[
T_{{final}} - 300 = \frac{362}{1.0002} \approx 361.8
\]
\[
T_{{final}} = 300 + 361.8 \approx 661.8 \, {K}
\]
Final Answer: The final equilibrium temperature of the gas is approximately 605 K (rounded off to the nearest integer).