For an FCC lattice, the number of atoms per unit cell (\(Z\)) is 4. The density (\(\rho\)) of a crystal is given by the formula:
\[
\rho = \frac{Z \cdot M}{a^3 \cdot N}
\]
where \(M\) is the atomic weight, \(a\) is the edge length, and \(N\) is Avogadro's number. Rearranging for \(M\):
\[
M = \frac{\rho \cdot a^3 \cdot N}{Z}
\]
Given: \(\rho = 8.92 \, \text{g cm}^{-3}\), \(a = 3.61 \times 10^{-8} \, \text{cm}\), \(N = 6.022 \times 10^{23} \, \text{mol}^{-1}\), and \(Z = 4\). First, calculate \(a^3\):
\[
a^3 = (3.61 \times 10^{-8})^3 = 4.7045 \times 10^{-23} \, \text{cm}^3
\]
Now, substitute the values:
\[
M = \frac{8.92 \times 4.7045 \times 10^{-23} \times 6.022 \times 10^{23}}{4} = \frac{8.92 \times 4.7045 \times 6.022}{4}
\]
\[
8.92 \times 4.7045 = 41.96414
\]
\[
41.96414 \times 6.022 = 252.668451
\]
\[
M = \frac{252.668451}{4} = 63.16711275 \, \text{g mol}^{-1} \approx 63.17 \, \text{u}
\]
Comparing with the options, the closest value is 63.178 u.
Thus, the correct answer is 63.178 u.