To solve the problem of determining the change in the de Broglie wavelength of an electron in an electric field, we start by analyzing its motion under the field's influence.
Initial velocity of the electron: \( \vec{v} = v_0 \hat{i} \)
Initial de Broglie wavelength: \[ \lambda = \frac{h}{mv_0} \] where \( h \) is Planck’s constant, \( m \) is the mass of the electron, and \( v_0 \) is the initial velocity.
The electron enters a uniform electric field: \( \vec{E} = -E_0 \hat{i} \)
Force on the electron: \[ \vec{F} = e\vec{E} = -eE_0 \hat{i} \] Acceleration: \[ a = \frac{F}{m} = -\frac{eE_0}{m} \]
\[ v(t) = v_0 + at = v_0 - \frac{eE_0 t}{m} \]
\[ \lambda'(t) = \frac{h}{m v(t)} = \frac{h}{m \left( v_0 - \frac{eE_0 t}{m} \right)} \]
Factor and simplify: \[ \lambda'(t) = \frac{h}{mv_0 \left(1 - \frac{eE_0 t}{mv_0} \right)} = \frac{\lambda}{1 + \frac{eE_0 t}{mv_0}} \]
The de Broglie wavelength of the electron at time \( t \) in the electric field is: \[ \boxed{ \lambda'(t) = \frac{\lambda}{1 + \frac{eE_0 t}{mv_0}} } \]
Match the LIST-I with LIST-II
LIST-I (Energy of a particle in a box of length L) | LIST-II (Degeneracy of the states) | ||
---|---|---|---|
A. | \( \frac{14h^2}{8mL^2} \) | I. | 1 |
B. | \( \frac{11h^2}{8mL^2} \) | II. | 3 |
C. | \( \frac{3h^2}{8mL^2} \) | III. | 6 |
Choose the correct answer from the options given below: