Step 1: Using the Formula for the Radius of Circular Motion
When a charged particle moves perpendicular to a uniform magnetic field, it follows a circular path. The radius of this path is given by the formula:
\[
r = \frac{m v}{q B}
\]
where:
- \( m = 9.1 \times 10^{-31} \) kg (mass of the electron),
- \( v = 4.8 \times 10^6 \) m/s (velocity of the electron),
- \( q = 1.6 \times 10^{-19} \) C (charge of the electron),
- \( B = 0.182 \) T (magnetic field strength).
Step 2: Substituting Values
\[
r = \frac{(9.1 \times 10^{-31}) (4.8 \times 10^6)}{(1.6 \times 10^{-19}) (0.182)}
\]
\[
r = \frac{4.368 \times 10^{-24}}{2.912 \times 10^{-20}}
\]
\[
r = 1.5 \times 10^{-4} \text{ m}
\]
Thus, the correct answer is \( \mathbf{(1)} \ 1.5 \times 10^{-4} \, m \).