Initial velocity u = 1 m/s - Acceleration a = - \( \frac{\sigma e}{2 \varepsilon_0 m} \) - Time t = 1 s - Displacement S = -1 m
The kinematic equation for displacement S is:
S = ut + \(\frac{1}{2}\)at2
Substitute values:
-1 = 1 × 1 + \(\frac{1}{2}\) × \( - \frac{\sigma e}{2 \varepsilon_0 m} \) × (1)2
-1 = 1 - \( \frac{\sigma e}{4 \varepsilon_0 m} \)
\( \frac{\sigma e}{4 \varepsilon_0 m} \) = 2
Therefore, σ = \( 8 \frac{\varepsilon_0 m}{e} \)
Given σ = α \(\left[ \frac{m \varepsilon_0}{e} \right]\), we find α = 8.
So, the correct answer is: α = 8
Step 1: Electric field due to an infinite sheet of charge.
For a uniformly charged infinite plane sheet: \[ E = \frac{\sigma}{2\varepsilon_0} \]
Force on the electron: \[ F = eE = e \frac{\sigma}{2\varepsilon_0} \] Since the field is directed away from the sheet and the electron has negative charge, it will accelerate toward the sheet with acceleration: \[ a = \frac{F}{m} = \frac{e\sigma}{2m\varepsilon_0} \]
Let the distance to the sheet be \( s = 1\,\text{m} \), initial speed \( u = 1\,\text{m/s} \), time \( t = 1\,\text{s} \), acceleration \( a = \frac{e\sigma}{2m\varepsilon_0} \).
Using equation of motion: \[ s = ut + \frac{1}{2}at^2 \] Substitute values: \[ 1 = 1(1) + \frac{1}{2}a(1)^2 \] \[ 1 = 1 + \frac{a}{2} \] \[ \frac{a}{2} = 0 \implies a = 0? \] Wait—that can’t be right because \( s \) is decreasing. The electron is moving toward the sheet (so displacement toward the sheet is taken as **negative**).
Let the direction toward the sheet be negative. So, displacement \( s = -1\,\text{m} \), initial velocity \( u = -1\,\text{m/s} \), and acceleration \( a \) is also negative (toward the sheet). Equation: \[ -1 = -1(1) + \frac{1}{2}a(1)^2 \] \[ -1 = -1 + \frac{a}{2} \] \[ 0 = \frac{a}{2} \] Still gives \( a = 0 \). Let's fix the sign: the electron is **accelerating**, so the **magnitude of displacement** must equal the sum of distances due to initial velocity and acceleration effect.
\[ 1 = ut + \frac{1}{2} a t^2 \] \[ 1 = 1(1) + \frac{1}{2} a (1)^2 \] \[ 1 = 1 + \frac{a}{2} \] So, in order to reach the sheet at 1 m distance, the **extra acceleration distance** must cover **1 m**, not **add to it**. Hence we consider displacement **toward** the sheet: \[ 1 = -u t + \frac{1}{2} a t^2 \] \[ 1 = -1(1) + \frac{1}{2}a(1)^2 \] \[ 1 = -1 + \frac{a}{2} \] \[ a = 4 \, \text{m/s}^2 \]
\[ a = \frac{e\sigma}{2m\varepsilon_0} = 4 \] \[ \sigma = \frac{8m\varepsilon_0}{e} \]
\[ \boxed{\alpha = 8} \]
Let \( C_{t-1} = 28, C_t = 56 \) and \( C_{t+1} = 70 \). Let \( A(4 \cos t, 4 \sin t), B(2 \sin t, -2 \cos t) \text{ and } C(3r - n_1, r^2 - n - 1) \) be the vertices of a triangle ABC, where \( t \) is a parameter. If \( (3x - 1)^2 + (3y)^2 = \alpha \) is the locus of the centroid of triangle ABC, then \( \alpha \) equals: