Initial velocity u = 1 m/s - Acceleration a = - \( \frac{\sigma e}{2 \varepsilon_0 m} \) - Time t = 1 s - Displacement S = -1 m
The kinematic equation for displacement S is:
S = ut + \(\frac{1}{2}\)at2
Substitute values:
-1 = 1 × 1 + \(\frac{1}{2}\) × \( - \frac{\sigma e}{2 \varepsilon_0 m} \) × (1)2
-1 = 1 - \( \frac{\sigma e}{4 \varepsilon_0 m} \)
\( \frac{\sigma e}{4 \varepsilon_0 m} \) = 2
Therefore, σ = \( 8 \frac{\varepsilon_0 m}{e} \)
Given σ = α \(\left[ \frac{m \varepsilon_0}{e} \right]\), we find α = 8.
So, the correct answer is: α = 8