To calculate the electric flux $\Phi$ through a sphere of radius $\sqrt{2}$, we use the definition of electric flux:
\[
\Phi = \int \vec{E} . d\vec{A} = \int \alpha \dfrac{e^{-r^2}}{r} \hat{r} . r^2 d\Omega \hat{r},
\]
where $d\Omega$ is the solid angle element.
The flux simplifies to:
\[
\Phi = \alpha \int_0^{2\pi} \int_0^\pi \frac{e^{-r^2}}{r} r^2 \sin(\theta) d\theta d\phi.
\]
The integrals over $\theta$ and $\phi$ give:
\[
\int_0^{2\pi} d\phi = 2\pi, \int_0^\pi \sin(\theta) d\theta = 2.
\]
Thus the total flux is:
\[
\Phi = 2\pi \alpha \int_0^{\sqrt{2}} e^{-r^2} r dr.
\]
Substituting limits and solving the integral gives the result:
\[
\Phi = 2\pi \alpha \left[ \dfrac{e^{-r^2}}{2} \right]_0^{\sqrt{2}} = 2\pi \alpha \times \dfrac{e^{-2} - 1}{2}.
\]
This simplifies to:
\[
\Phi \approx 2\pi \alpha \times 0.220.
\]
Thus, $\dfrac{\Phi}{2\pi \alpha} \approx 0.220$, which is approximately $2.20$.