The formula for the boiling point elevation is:
\[ \Delta T_b = i \cdot K_b \cdot m \]
Where:
Step 1: Calculate the molality of the solution.
Molality \( m \) is defined as:
\[ m = \frac{\text{mol of solute}}{\text{mass of solvent in kg}} \]
The number of moles of solute is:
\[ \text{mol of solute} = \frac{\text{mass of solute}}{\text{molar mass of solute}} = \frac{20 \text{ g}}{60 \text{ g/mol}} = 0.3333 \text{ mol} \]
Since the solvent mass is 1 kg, the molality is:
\[ m = \frac{0.3333 \text{ mol}}{1 \text{ kg}} = 0.3333 \text{ mol/kg} \]
Step 2: Since the electrolyte \( \text{A}_2\text{B} \) dissociates into 3 ions (\( 2\text{A}^+ \) and \( \text{B}^- \)), the van't Hoff factor \( i = 3 \).
Step 3: Now, calculate the change in boiling point:
\[ \Delta T_b = i \cdot K_b \cdot m = 3 \cdot 0.52 \text{ K kg mol}^{-1} \cdot 0.3333 \text{ mol/kg} = 0.51996 \text{ K} \]
Step 4: The normal boiling point of water is 373.15 K, so the new boiling point is:
\[ T_b = 373.15 \text{ K} + 0.51996 \text{ K} = 373.52 \text{ K} \]
Thus, the boiling point of the solution is \( 373.52 \text{ K} \).
14g of cyclopropane burnt completely in excess oxygen. The number of moles of water formed is:
If $ X = A \times B $, $ A = \begin{bmatrix} 1 & 2 \\-1 & 1 \end{bmatrix} $, $ B = \begin{bmatrix} 3 & 6 \\5 & 7 \end{bmatrix} $, find $ x_1 + x_2 $.