Step 1: Convert speed to m/s and calculate centripetal acceleration.
Speed in m/s: \[ v = 900 \times \frac{1000}{3600} = 250 \, {m/s} \] Centripetal acceleration \( a_c \): \[ a_c = \frac{v^2}{r} = \frac{250^2}{1000} = 62.5 \, {m/s}^2 \] Step 2: Compare to gravitational acceleration.
Gravitational acceleration \( g \approx 9.81 \, {m/s}^2 \): \[ {Ratio} = \frac{a_c}{g} = \frac{62.5}{9.81} \approx 6.38 \]
For a given reaction \( R \rightarrow P \), \( t_{1/2} \) is related to \([A_0]\) as given in the table. Given: \( \log 2 = 0.30 \). Which of the following is true?
\([A]\) (mol/L) | \(t_{1/2}\) (min) |
---|---|
0.100 | 200 |
0.025 | 100 |
A. The order of the reaction is \( \frac{1}{2} \).
B. If \( [A_0] \) is 1 M, then \( t_{1/2} \) is \( 200/\sqrt{10} \) min.
C. The order of the reaction changes to 1 if the concentration of reactant changes from 0.100 M to 0.500 M.
D. \( t_{1/2} \) is 800 min for \( [A_0] = 1.6 \) M.
If \( n \) is an integer and \( Z = \cos \theta + i \sin \theta, \theta \neq (2n + 1)\frac{\pi}{2}, \) then: \[ \frac{1 + Z^{2n}}{1 - Z^{2n}} = ? \]