Given the AC voltage: \[ V(t) = 50\sqrt{2} \sin(100t) \]
Capacitance: \[ C = 1\ \mu F = 1 \times 10^{-6}\ F \]
From the given voltage expression \( V(t) = V_0 \sin(\omega t) \), where \( V_0 = 50\sqrt{2} \), we find the RMS voltage: \[ V_{rms} = \frac{V_0}{\sqrt{2}} = \frac{50\sqrt{2}}{\sqrt{2}} = 50\ V \]
Capacitive reactance is given by: \[ X_C = \frac{1}{\omega C} \] where \( \omega = 100\ \text{rad/s} \), and \( C = 1 \times 10^{-6} \ \text{F} \) \[ X_C = \frac{1}{100 \times 1 \times 10^{-6}} = \frac{1}{10^{-4}} = 10^4 = 10000\ \Omega \]
The RMS current through a capacitor in an AC circuit is: \[ I_{rms} = \frac{V_{rms}}{X_C} = \frac{50}{10000} = 0.005\ A \]
0.005 A (Option 3)