An AC voltage of $ 10 \sin \omega t $ volt is applied to a pure inductor of inductance $ 10 \, \text{H} $. The current through the inductor in ampere is:
Show Hint
In a pure inductor, the current lags the voltage by \( \frac{\pi}{2} \), and the amplitude of the current is determined by the inductive reactance \( \omega L \).
\( \frac{1}{\omega} \sin \left( \omega t - \frac{\pi}{2} \right) \)
\( \omega \sin \left( \omega t - \frac{\pi}{2} \right) \)
\( \frac{1}{\omega^2} \sin \left( \omega t - \frac{\pi}{2} \right) \)
\( \omega^2 \sin \left( \omega t - \frac{\pi}{2} \right) \)
Hide Solution
Verified By Collegedunia
The Correct Option isA
Solution and Explanation
We need to find the current through a pure inductor with an AC voltage applied.
Step 1: Write the voltage equation.
\[
V = 10 \sin \omega t
\]
Step 2: Relate voltage to current.
For an inductor:
\[
V = L \frac{di}{dt} \implies 10 \sin \omega t = 10 \frac{di}{dt} \implies \frac{di}{dt} = \sin \omega t
\]
Step 3: Integrate to find the current.
\[
i = \int \sin \omega t \, dt = -\frac{1}{\omega} \cos \omega t = \frac{1}{\omega} \sin \left( \omega t - \frac{\pi}{2} \right)
\]
Final Answer:
\[
\boxed{\dfrac{1}{\omega} \sin \left( \omega t - \dfrac{\pi}{2} \right)}
\]