Step 1: The word is LETTER. Letters in alphabetical order: E, E, L, R, T, T
Step 2: Count total number of permutations:
\[
\text{Total letters} = 6, \quad \text{with E and T repeating twice each}
\]
\[
\Rightarrow \text{Total permutations} = \frac{6!}{2! \cdot 2!} = \frac{720}{4} = 180
\]
Step 3: Find the rank of TETLER:
We fix letters one by one and count how many permutations come before "TETLER".
[--] Fix first letter < T: E, L, R → try each:
E: Remaining = E, L, R, T, T → \(\frac{5!}{2!} = 60\)
L: Remaining = E, E, R, T, T → \(\frac{5!}{2! \cdot 2!} = 30\)
R: Remaining = E, E, L, T, T → \(\frac{5!}{2! \cdot 2!} = 30\)
Total before T = \(60 + 30 + 30 = 120\)
[--] Fix T as 1st letter.
Now check 2nd letter < E: only E comes next, so we proceed.
[--] Fix 2nd letter = E. Remaining: E, L, R, T
[--] Fix 3rd letter < T: E, L, R
E: Remaining = L, R, T → \(3! = 6\)
L: Remaining = E, R, T → \(3! = 6\)
R: Remaining = E, L, T → \(3! = 6\)
Total before TET... = \(6 + 6 + 6 = 18\)
[--] Fix 3rd = T. Remaining: E, L, R
[--] Fix 4th < L: E → Remaining = L, R → \(2! = 2\)
[--] Fix 4th = L. Remaining = E, R
[--] Fix 5th < E: none
[--] Fix 5th = E. Remaining = R
[--] 6th = R
Only this matches TETLER
\[
\text{Rank} = 120 (\text{from earlier T cases}) + 18 + 2 + 1 = \boxed{141}
\]