Step 1: Compute the floor area.
\[
\text{Area} = 9.5\times 11.5 = 109.25\ \text{m}^2.
\]
Step 2: Cost per square metre of each tile.
A $1$ m$\times 1$ m tile covers $1$ m$^2$ at \rupee{}100 $\Rightarrow$ \rupee{}100/m$^2$.
A $0.5$ m$\times 0.5$ m tile covers $0.25$ m$^2$ at \rupee{}30 $\Rightarrow$ \rupee{}120/m$^2$.
{Hence the $1$ m tile is cheaper per area.} We should buy as much $1$ m tile area as possible and use the $0.5$ m tile only to make up any fractional remainder (cutting is allowed, so shapes don’t restrict us).
Step 3: Optimize the mix (integer tiles).
Let $x$ be the number of $1$ m tiles and $y$ the number of $0.5$ m tiles. Then
\[
x + 0.25y \ge 109.25,
\qquad \text{Cost} = 100x + 30y.
\]
Take $x=\lfloor 109.25\rfloor = 109$; remaining area $= 109.25-109=0.25$ m$^2$ $\Rightarrow$ one $0.5$ m tile ($y=1$) suffices.
\[
\text{Cost} = 100(109) + 30(1) = \rupee{}10{,}930.
\]
Check nearby integer choices.
$x=110,y=0 \Rightarrow$ \rupee{}11{,}000;\quad
$x=108,y=5 \Rightarrow$ \rupee{}10{,}950.\;
Both are costlier. Thus \rupee{}10{,}930 is minimal.
\[
\boxed{\text{Minimum cost}=\ \rupee{}10{,}930}
\]