$\frac{3 + 4\gamma}{\gamma -1}$
$\frac{4 - 3\gamma}{\gamma -1}$
For a polyatomic gas with 3 translational, 3 rotational, and $f$ vibrational modes:
Internal energy (U) $= \frac{3}{2}k_BT + \frac{3}{2}k_BT + fk_BT = (3 + f)k_BT$
$C_v = (3 + f)R$
$C_p = (4 + f)R$
$\gamma = \frac{C_p}{C_v} = \frac{4 + f}{3 + f}$
$3\gamma + f\gamma = 4 + f$
$f(\gamma - 1) = 4 - 3\gamma$
$f = \frac{4 - 3\gamma}{\gamma - 1}$
Match List - I with List - II.

Consider the following statements:
(A) Availability is generally conserved.
(B) Availability can neither be negative nor positive.
(C) Availability is the maximum theoretical work obtainable.
(D) Availability can be destroyed in irreversibility's.
The output (Y) of the given logic implementation is similar to the output of an/a …………. gate.